Michael Petriello

Michael Petriello

Assistant Professor

Michael.Petriello@wayne.edu

Michael Petriello

Address

IBio room 2128

Office Phone

 313-577-1089

Short Research Introduction

The goals of my research are directly relatable to understanding mechanisms that link nutrition and toxicology and may lead to translatable prevention strategies that may limit pollutant-induced metabolic disorders such as diabetes, obesity, and cardiovascular disease especially in at-risk populations. I also have strong experience and interest in using large data sets to uncover novel associations of environmental risk and cardiovascular disease as well as working with underserved communities that face multiple chemical and non-chemical stressors. Overall, I aim to investigate biomarkers that link environmental exposures, diet, and metabolic diseases in human populations and to test mechanisms of toxicity using mouse models of cardiometabolic disease.

Research Interests

Specifically, I am interested in how chemical and non-chemical stressors such as diet can interact to increase the risk of inflammatory diseases. This paradigm is exemplified by my currently funded K99/R00 entitled “TMAO is a biomarker of dioxin-like pollutant exposure and cardiometabolic disease”. Trimethylamine N-oxide (TMAO) is a novel biomarker of cardiometabolic disease and we are interested in how exposures to certain classes of pollutants may increase circulating levels of this diet-derived metabolite. We have shown that dioxin-like pollutants may increase TMAO levels by increasing the hepatic expression of enzymes directly related to TMAO formation (FMO3), and/or by modulating gut microbiota.

Department

Institute of Environmental Health Sciences and Pharmacology

Selected Publications

 Petriello MC, Hoffman JB, Vsevolozhskaya O, Morris AJ, Hennig B: Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environmental Pollution. 2018 Nov;242(Part A):1022-1032. doi: 10.1016/j.envpol.2018.07.039. Epub 2018 Jul 17. PMID: 30373033


Petriello MC, Charnigo R, Sunkara M, Soman S, Pavuk M, Birnbaum L, Morris AJ, Hennig B.: Relationship between serum trimethylamine N-oxide and exposure to dioxin-like pollutants. Environmental Research. 2018 Apr;162:211-218. doi: 10.1016/j.envres.2018.01.007. Epub 2018 Jan 30. PMID: 29353125.


Petriello MC, Brandon JA, Hoffman J, Wang C, Tripathi H, Abdel-Latif A, Ye X, Li X, Yang L, Lee E, Soman S, Barney J, Wahlang B, Hennig B, Morris AJ,: Dioxin-like PCB 126 increases systemic inflammation and accelerates atherosclerosis in lean LDL receptor deficient mice. Toxicological Sciences. 2018 Apr 1;162(2):548-558. doi: 10.1093/toxsci/kfx275. PMID: 29216392.


Petriello MC, Hoffman J, Sunkara, Wahlang B, Perkins JT, Morris AJ, Hennig B: Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker Trimethylamine N-oxide from dietary precursors. Journal of Nutritional Biochemistry. 2016 Jul;33:145-53. doi: 10.1016/j.jnutbio.2016.03.016. Epub 2016 Apr 1. PMID: 27155921


AlSiraj Y, Chen X, Thatcher SE, Temel RE, Cai L, Blalock E, Katz W, Ali HM, Petriello M, Deng P, Morris AJ, Wang X, Lusis AJ, Arnold AP, Reue K, Thompson K, Tso P, Cassis LA. XX sex chromosome complement promotes atherosclerosis in mice. Nature Communications. 2019 June 14; 10(1):2631. doi: 10.1038/s41467-019-10462-z. PMID: 31201301

← Return to listing