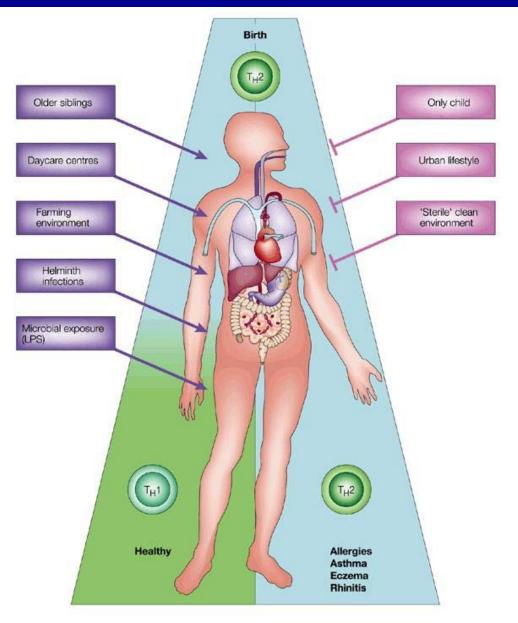

Microbiome, Immune function, and murine pulmonary disease

CURES Symposium: Addressing the Asthma and Allergy Epidemics October 7, 2015


> Nick Lukacs, PhD Godfrey Dorr Stobbe Professor of Pathology University of Michigan Medical School

T cell maturation and differentiation depends upon Immune environments

IL-4- IgE → Mast cell activation
IL-5- Eosinophilia → airway damage and fibrosis
IL-13- Goblet cell metaplasia → mucus and airway obstruction

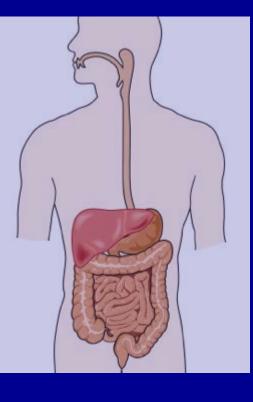
The hygiene hypothesis

Nature Reviews | Immunology

Food

Host genetics

Factors that affect the gut microbiome


Commensal bacteria

Protection

- Mucosal barrier function
- Treg cell development

Development and modulation of the host immune responses

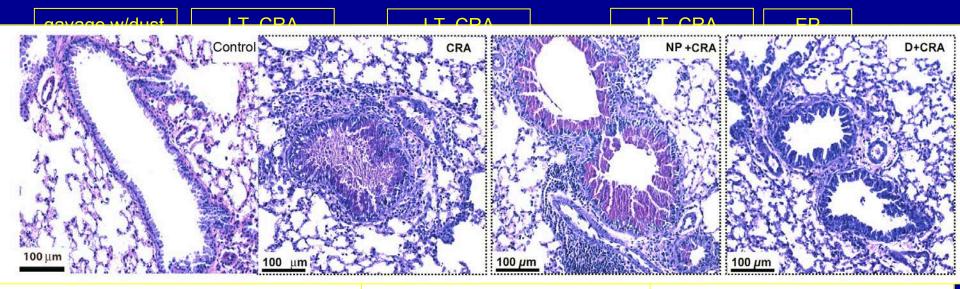
Metabolism

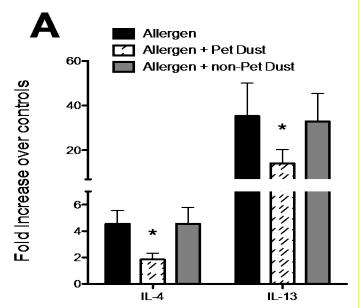
Pathobionts

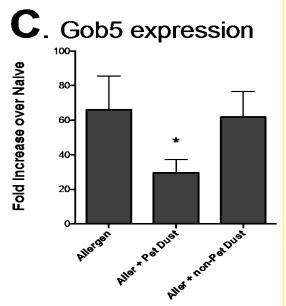
The resulting overgrowth of the pathobiont may cause inflammation and bleeding of the lining of the colon.

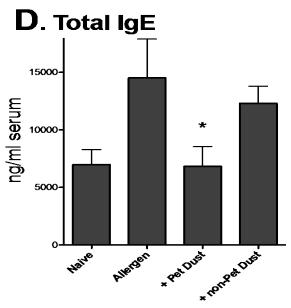
Obesity Cancer

Adapted from Environ Health Perspect ; DOI:10.1289

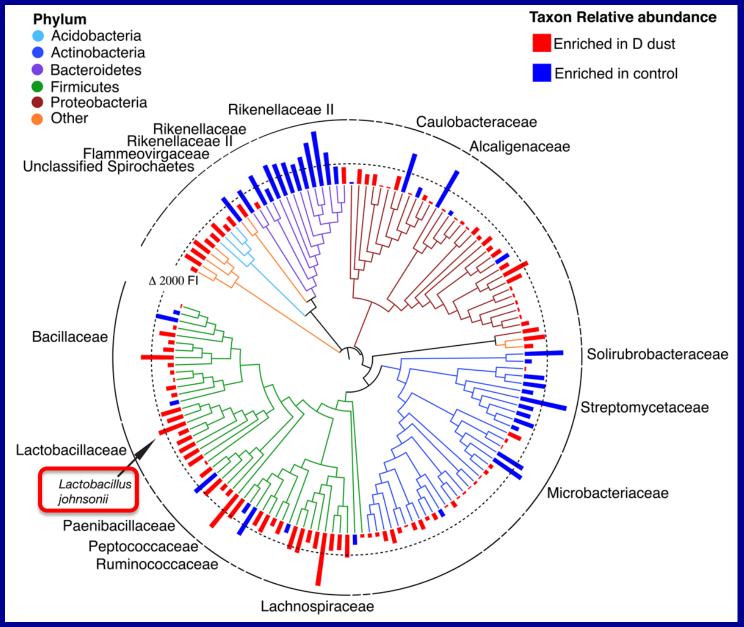

Infant's Environment shapes the Microbiome


- Natural vs. Cesarean section birth
- Bottle vs. Breast feeding
- Timing and type of solid food introduction
- Antibiotic use
- Vitamin and nutrition
- Household exposure- high % of early life


Man's best friend? The effect of pet ownership on house dust microbial communities. -Increase in bacterial diversity and a decrease in fungal species

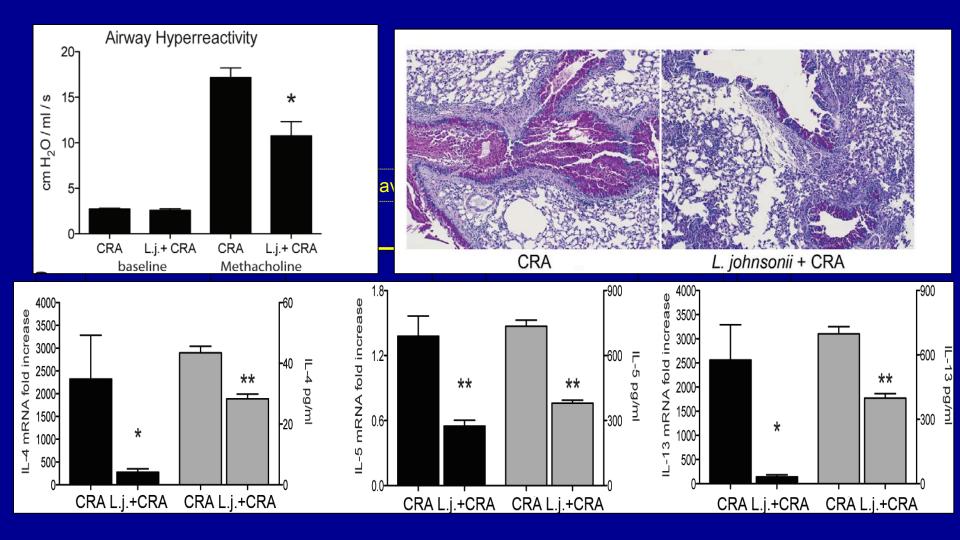

Fujimura KE, Johnson CC, Ownby DR, Cox MJ, Brodie EL, Havstad SL, Zoratti EM, Woodcroft KJ, Bobbitt KR, Wegienka G, Boushey HA, Lynch SV. JACI 126:410.

Dust-exposed mice have a modified response in cockroach allergen (CRA) model

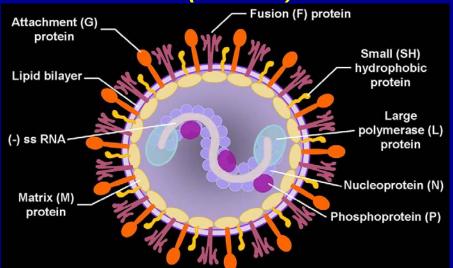


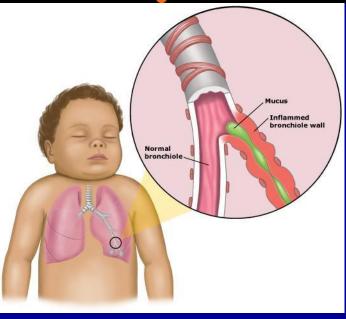
Bacterial diversity in Pet dust supplemented animals

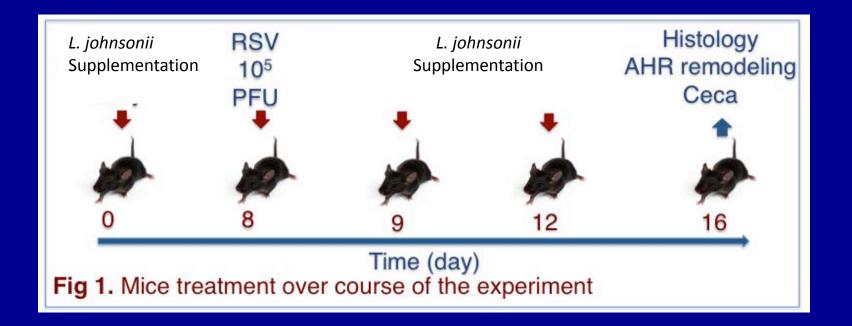
PNAS 111:805-810


Lactobacillus Supplementation

- Colonic contents of 4 mice
- Lactobacillus isolation media
- Sequenced 6 isolates per mouse
- Twenty one isolates yielded high quality full length 16S rRNA sequence- All were L. johnsonii
- 99% coverage and 99% homology to expected Lactobacillus species
- Batch culture
- Standardized (1 x 10⁷ CFU) supplements in glycerol

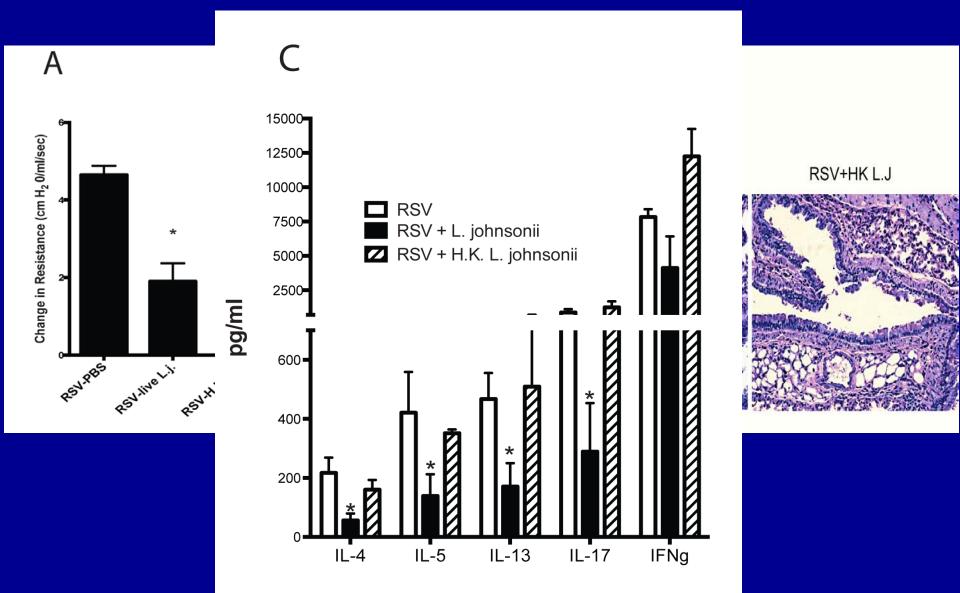

Lactobacillus johnsonii supplementation protects asthmatic mice



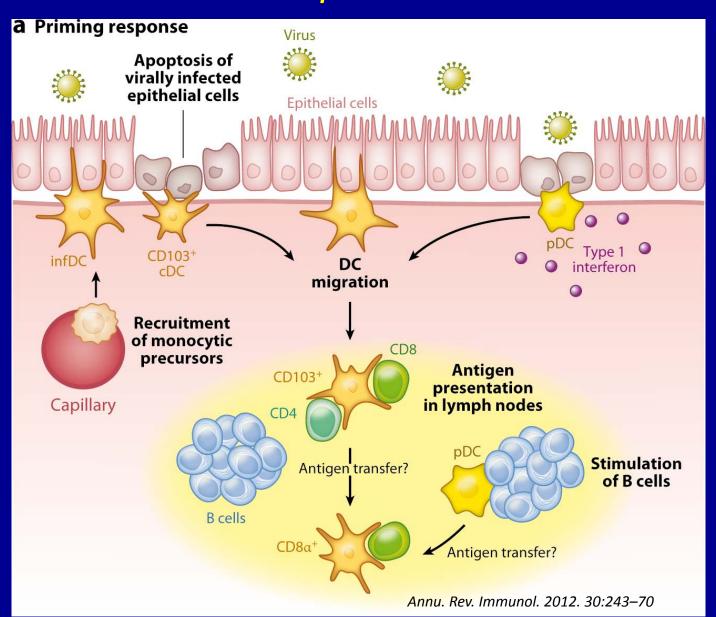

PNAS 111:805-810

Viral infections during infancy -→ Asthma? Respiratory Syncytial Virus (RSV)

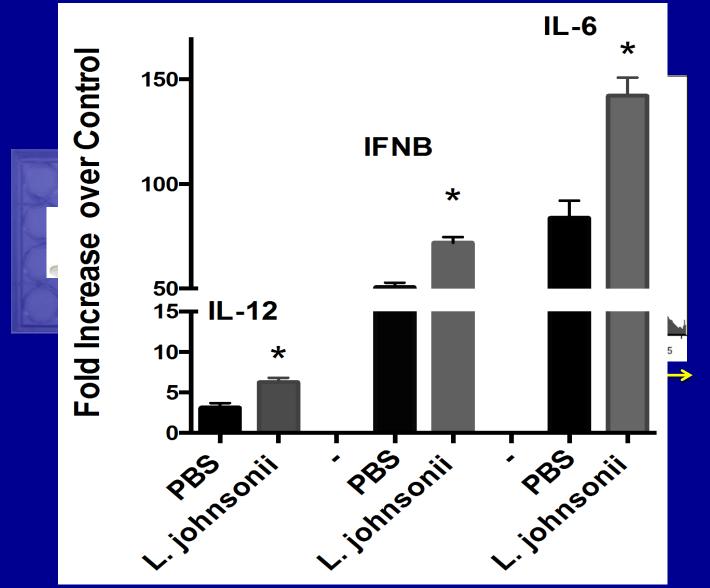
- Leading cause of respiratory illness and hospitalization in infants
- Airway epithelial damage
- Leads to long-term Respiratory disease
- Goblet cell hypertrophy, mucus hypersecretion;
- □ Th2 and Th17 cytokine production;
- Associated with increased Asthma
- During RSV infection-Tregs control the magnitude of cellular immune responses. (Brincks EL, J. Immunology, 2013)

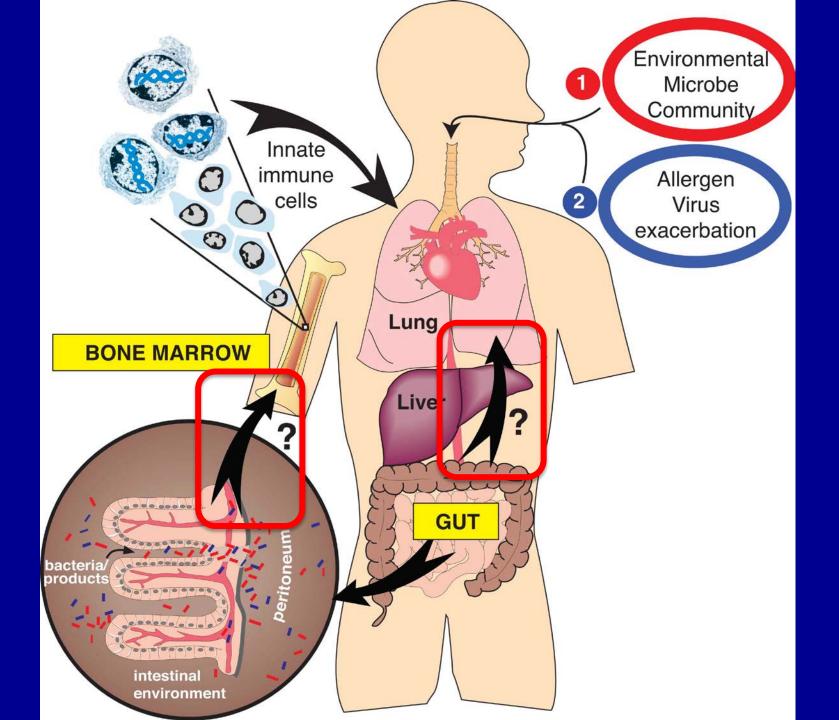

-Viable vs heat killed bacteria 1 x 10⁷ CFU daily supplement – 7 days

-RSV (line 19) infection on day 8 of treatment protocol

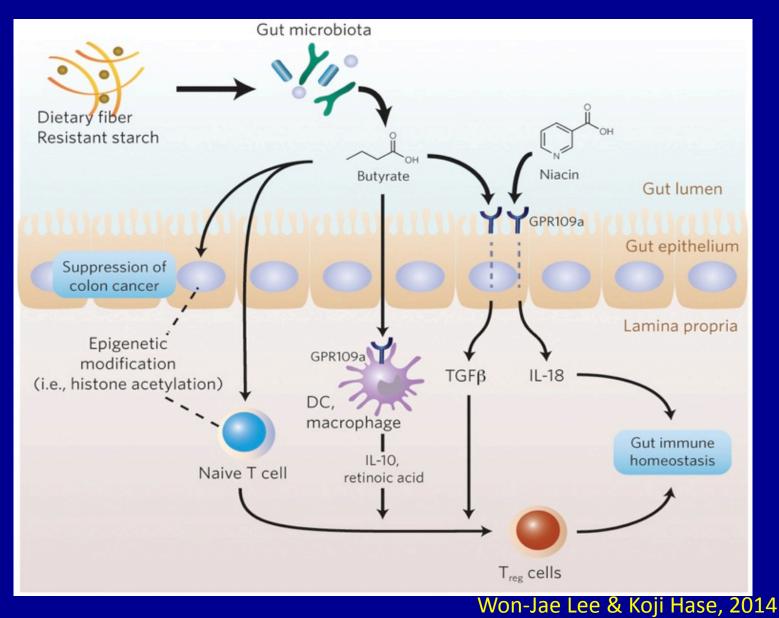

- Outcome measurements

- 1. Airway responses histology
- 2. Immune responses Th2, IFNg, muc5AC Gob5


L. Johnsonii supplementation alters RSV-induced pathophysiology



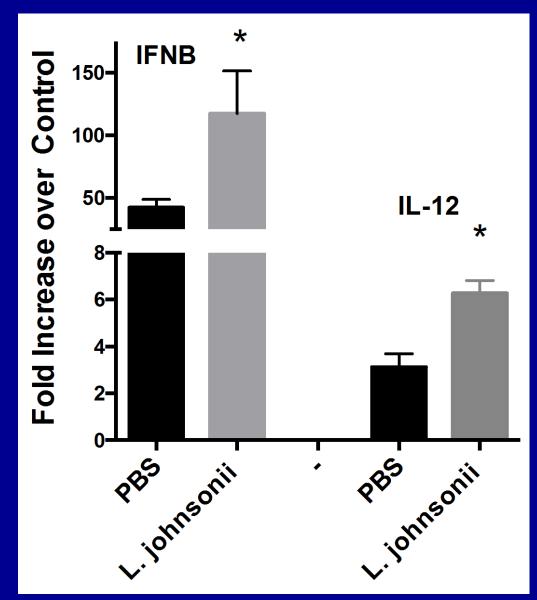
Dendritic Cells (DC) prime the adaptive immune response



Bone marrow DC are altered in L. johnsonii exposed animals in Response to RSV

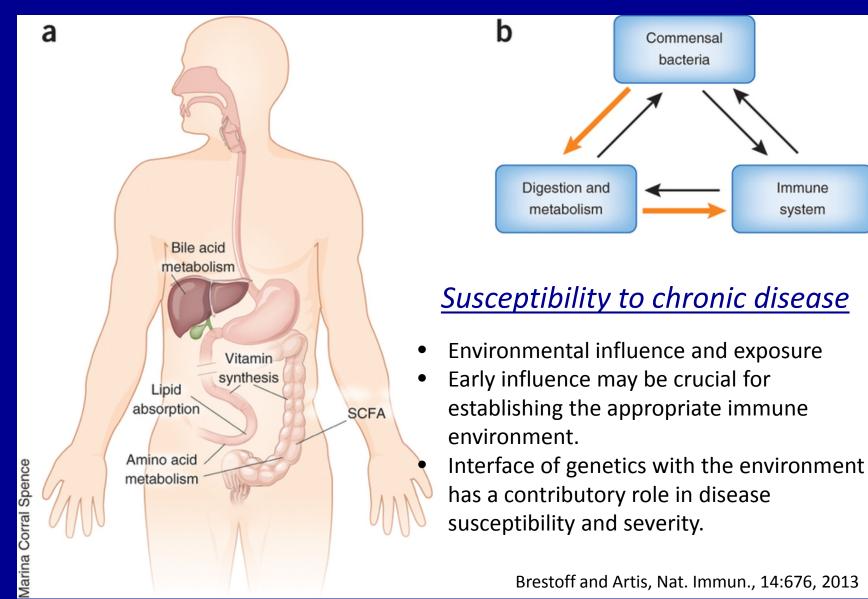
Microbiome can determine metabolite production available to alter immune function

Sub Pathway	Biochemical Name	PBS	L. johnsonii
	alpha-hydroxyisovalerate	1.0314	1.2644
	isoleucine	0.95	1.3852
	3-methyl-2-oxovalerate	0.7178	1.8789
Leucine, Isoleucine and	2-hydroxy-3-methylvalerate	1.1784	1.6114
Valine Metabolism	valine	0.9468	1.3642
	3-methyl-2-oxobutyrate	0.8829	1.5879
	3-hydroxyisobutyrate	1.0203	1.8043
	alpha-hydroxyisocaproate	0.7684	1.8758
	myristoleate (14:1n5)	1.0156	1.6242
	palmitate (16:0) palmitoleate (16:1n7)	0.8279	1.2426
Long chain fatty acids	10-heptadecenoate (17:1n7)	0.9297	1.9098
	oleate (18:1n9)	0.9946	1.5634
	cis-vaccenate (18:1n7)	1.1388	1.6774
	10-nonadecenoate (19:1n9)	0.9574	1.7259
	stearidonate (18:4n3)	0.9092	2.0629
	eicosapentaenoate (EPA; 20:5n3)	0.9697	1.6829
	docosapentaenoate (n3 DPA; 22:5n3)	1.0019	2.1902
Polyunsaturated Fatty	docosahexaenoate (DHA; 22:6n3)	1.0062	1.4737
Acid (n3 and n6)	linolenate [alpha or gamma; (18:3n3 or 6)]	0.9729	1.8151
	docosapentaenoate (n6 DPA; 22:5n6)	0.8102	1.52
	dihomo-linoleate (20:2n6)	0.8467	1.6506
	mead acid (20:3n9)	0.6505	2.1117
	myristoylcarnitine	0.929	1.856
	palmitoylcarnitine	0.8664	1.580
Fatty acid Metabolism	stearoylcarnitine	1.0211	2.2988
	oleoylcarnitine	1.0648	1.5524
	myristoleoylcarnitine* 2-hydroxyoctanoate	1.0617	1.6484
	2-hydroxydecanoate	0.7521	2.0658
	3-hydroxyoctanoate	1.0549	1.9832
Fatty Acid,	3-hydroxydecanoate	1.1702	2.1847
	3-hydroxylaurate	1.2756	1.9255
Monohydroxy	3-hydroxymyristate	1.072	1.6838
	5-hydroxyhexanoate	1.624	0.9847
	13-HODE + 9-HODE	0.5803	1.2566
	2-palmitoylglycerophosphocholine	0.9996	1.5364
	1-palmitoleoylglycerophosphocholine (16:1)*	0.8732	1.9251
	1-stearoylglycerophosphocholine (18:0)	0.8448	1.5759
	2-stearoylglycerophosphocholine*	1.1226	1.4973
	1-oleoylglycerophosphocholine (18:1)	0.8709	1.5372
	1-linoleoylglycerophosphocholine (18:2n6)	1.0147	1.5413
	1-linolenoylglycerophosphocholine (18:3n3)*	1.0223	2.2419
LysoLipids	1-arachidonoylglycerophosphocholine (20:4n6)*	0.9596	1.4044
	1-palmitoylplasmenylethanolamine*	0.2615	0.8295
	1-oleoylglycerophosphoethanolamine	0.7086	1.4933
	1-linoleoylglycerophosphoethanolamine*	0.7802	1.7731
	1-arachidonoylglycerophosphoethanolamine* 1-linoleoylglycerophosphoinositol*	0.8629	1.6604
	1-arachidonoylglycerophosphoinositol*	0.9122	1.456
	palmitoyl-linoleoyl-glycerophosphocholine (2)*	0.9206	1.295
	palmitoyl-palmitoyl-glycerophosphocholine (1)*	0.5873	0.956
	palmitoyl-palmitoyl-glycerophosphocholine (2)*	0.4736	0.772
	stearoyl-linoleoyl-glycerophosphocholine (1)*	0.9828	1.282
	1-palmitoylglycerol (1-monopalmitin)	1.2643	1.640
	1-oleoylglycerol (1-monoolein)	0.5196	3.04
	1-linoleoylglycerol (1-monolinolein)	1.0244	2.23
Monoacylglycerol	2-linoleoylglycerol (2-monolinolein)	0.8505	2.969
	1-docosahexaenoylglycerol	1.462	1.839
	1-dihomo-linolenylglycerol (alpha, gamma)	1.3659	1.746
	2-docosahexaenoylglcyerol*	1.8316	2.81
Steroid	corticosterone	1.2699	0.547
	11-dehydrocorticosterone	1.3886	0.396
	cholate taurocholate	4.5401	18.321
Primary Bile Acid	taurocholate	0.6944	5.878
Metabolism	taurochenodeoxycholate beta-muricholate	0.4883	6.103
	tauro-beta-muricholate	0.846	4.247
	deoxycholate	0.846	3.053
Secondary Rile Acid	taurodeoxycholate	0.5989	
Secondary Bile Acid	taurolithocholate 3-sulfate	0.9432	2.355
Metabolism	taurohyodeoxycholic acid	0.771	5.2808
	7-ketodeoxycholate	1.9761	19.3096


Upregulation of plasma metabolites in animals supplemented with *L. johnsonii*

- Animals were supplemented with 1 X 10⁷ cfu of *L. johnsonii* by oral gavage for 7 days and plasma metabolite levels were assessed
- Supplemented animals were then infected with RSV. After 2 days of RSV infection plasma from sacrificed animals (5/group) was harvested and the metabolite levels compared to supplemented mice at day 0 prior to infection.

Red – significantly upregulated Green- significantly downregulated


Sub Pathway	Biochemical Name	PBS	L. johnsonii
Leucine, Isoleucine and	alpha-hydroxyisovalerate	1.0314	1.2644
	isoleucine	0.95	1.3852
	3-methyl-2-oxovalerate	0.7178	1.8789
	2-hydroxy-3-methylvalerate	1.1784	1.6114
Valine Metabolism	valine	0.9468	1.3642
	3-methyl-2-oxobutyrate	0.8829	1.5879
	3-hydroxyisobutyrate	1.0203	1.8043
	alpha-hydroxyisocaproate	0.7684	1.8758
Long chain fatty acids	myristoleate (14:1n5)	1.0156	1.6242
	palmitate (16:0)	0.8279	1.2426
	palmitoleate (16:1n7)	0.9297	1.9098
	10-heptadecenoate (17:1n7)	0.9143	1.6254
	oleate (18:1n9)	0.9946	1.5634
	cis-vaccenate (18:1n7)	1.1388	1.6774
	10-nonadecenoate (19:1n9)	0.9574	1.7259
	stearidonate (18:4n3)	0.9092	2.0629
Polyunsaturated Fatty Acid (n3 and n6)	eicosapentaenoate (EPA; 20:5n3)	0.9697	1.6829
	docosapentaenoate (n3 DPA; 22:5n3)	1.0019	2.1902
	docosahexaenoate (DHA; 22:6n3)	1.0062	1.4737
	linolenate [alpha or gamma; (18:3n3 or 6)]	0.9729	1.8151
	docosapentaenoate (n6 DPA; 22:5n6)	0.8102	1.527
	dihomo-linoleate (20:2n6)	0.8467	1.6506
	mead acid (20:3n9)	0.6505	2.1117
Fatty acid Metabolism	myristoylcarnitine	0.929	1.8567
	palmitoylcarnitine	0.8664	1.5805
	stearoylcarnitine	1.0211	2.2988
	oleoylcarnitine	1.0648	1.5524
	myristoleoylcarnitine*	1.0617	1.6484
	2-hydroxyoctanoate	0.7521	1.6325
	2-hydroxydecanoate	0.6441	2.0658
	3-hydroxyoctanoate	1.0549	1.9832
Fatty Acid,	3-hydroxydecanoate	1.1702	2.1847
Monohydroxy	3-hydroxylaurate	1.2756	1.9255
	3-hydroxymyristate	1.072	1.6838
	5-hydroxyhexanoate	1.624	0.9847

Alteration of RSV-induced DC activation by plasma from L. johnsonii supplemented mice

- BMDC were pre-incubated with plasma from supplemented animals at day 2 of RSV infection.
- DC were infected with RSV for 24 hrs and assessed for cytokine expression.
- Similar to the response of BMDC from supplemented mice, the plasma *from L. johnsonii* supplemented mice induced higher cytokine production.

Environment, Microbiome, Metabolic activity, and immunity

MAAP Collaboration

NIH, NIAID- P01AI089473

Christine Johnson, PhD, MPH Ed Zoratti, MD Kevin Bobbitt, PhD Kim Woodcroft, PhD Genesa Wegienka, PhD Susan Havstad, PhD Al Levine, PhD Andrea Cassidy, PhD Kyra Jones Haejin Kim, MD Alex Sitarik, MS Karen Broski, PhD

Dennis Ownby, MD

Susan Lynch, PhD Homer Boushey, MD Kei Fujimura, PhD Marcus Rauch, PhD Ariane Panzer Kaitlyn Lucy, PhD Tine Demoor, PhD Aaron Berlin Andrew Rasky Sihyug Jang, PhD Wendy Fonseca, PhD Nick Lukacs, PhD