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T cell maturation and differentiation
depends upon Immune environments
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IL-4- IgE = Mast cell activation
IL-5- Eosinophilia = airway damage and fibrosis
IL-13- Goblet cell metaplasia = mucus and airway obstruction

+ Anti-viral immunity
- Airway damage

+ Anti-parasitic,

- allergy, asthma

+ Anti-bacterial immunity,
- autoimmunity

+ Tolerance to inert antigens
- Reduced pathogen response
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Factors that affect the gut microbiome

Commensal bacteria Pathobionts

Protection
e  Mucosal barrier function
* Treg cell development

The resulting overgrowth of the
pathobiont may cause inflammation
and bleeding of the lining of the

colon.
Development and modulation of
the host immune responses Obesity
Cancer

Metabolism

Adapted from Environ Health Perspect ; DOI:10.1289
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Infant’s Environment shapes the Microbiome

e Natural vs. Cesarean section birth

e Bottle vs. Breast feeding

 Timing and type of solid food introduction
e Antibiotic use

e Vitamin and nutrition

 Household exposure- high % of early life

Man's best friend? The effect of pet ownership on house dust microbial communities.
-Increase in bacterial diversity and a decrease in fungal species

Fujimura KE, Johnson CC, Ownby DR, Cox MJ, Brodie EL, Havstad SL, Zoratti EM, Woodcroft KJ, Bobbitt KR, Wegienka G,
Boushey HA, Lynch SV. JACI 126:410.



Fold Increase over controls

Dust-exposed mice have a modified response in
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cockroach allergen (CRA) model
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Bacterial diversity in Pet dust supplemented animals
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Lactobacillus Supplementation

Colonic contents of 4 mice
Lactobacillus isolation media

Sequenced 6 isolates per mouse

Twenty one isolates yielded high quality full length 16S
rRNA sequence— All were L. johnsonii

99% coverage and 99% homology to expected
Lactobacillus species

Batch culture

Standardized (1 x 107 CFU) supplements in glycerol




Lactobacillus johnsonii supplementation protects
asthmatic mice
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Viral infections during infancy -2 Asthma?

Respiratory Syncytial Virus (R sv)

Attachment (G)
protein

Small (SH)
hydrophobic
protein

a Leading cause of respiratory e

illness and hospitalization in Large
infants (-) ss RNA ”&f mly:::::isnem

Nucleoprotein (N)

Q Airway epithelial damage

3 Leads to long-term Respiratory
disease

Q Goblet cell hypertrophy, mucus
hypersecretion;

a Th2 and Th17 cytokine production;

Q Associated with increased Asthma B NN

Q During RSV infection-Tregs control :
the magnitude of cellular immune
reSPONSES. (Brincks EL, J. Immunology, 2013)

Matrix (M)

protein &~ Phosphoprotein (P)



L. johnsonii RSV L. johnsonii Histology
Supplementation 105 Supplementation AHR remodeling

PFU Ceca
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Fig 1. Mice treatment over course of the experiment

-Viable vs heat killed bacteria
1 x 107 CFU daily supplement — 7 days

-RSV (line 19) infection on day 8 of treatment protocol

- Outcome measurements

1. Airway responses — histology
2. Immune responses — Th2, IFNg, muc5AC Gob5



L. Johnsonii supplementation alters

RSV-induced pathophysiology
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Dendritic Cells (DC) prime the adaptive immune
response
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Upon infection, antigen-presenting cells known as dendritic cells (DC) prime the adaptive immune response. These cells transport viral antigen from dying respiratory epithelial cells to local lymph nodes, where they activate both CD4 and CD8 T cell responses. DC activation and viral recognition is necessary to mount an immune response that can effectively clear the virus. 


Bone marrow DC are altered in L. johnsonii
exposed animals in Response to RSV
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Microbiome can determine metabolite
production available to alter immune function

Gut microbiota
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Figure 4 | Host-microbe interactions mediated by butyrate and niacin. Butyrate is mainly produced
by clusters IV and XIVa of Clostridia. Although butyrate acts as an energy source for normal colonic
epithelial cells (trophic effect), it also has the capability to suppress proliferation of cancerous epithelial
cells that usually undergo the Warburg effect99. Butyrate upregulates histone H3 acetylation at
regulatory regions of the Foxp3 gene and facilitates differentiation of naive CD4+ T cells into Treg cells.
In contrast, butyrate together with other SCFAs induce TGF-b secretion by epithelial cells through an
unknown mechanism71. Gpr109a was originally described as the receptor for niacin. Butyrate and niacin
bind Gpr109a on epithelial cells to trigger production of a cytoprotective cytokine IL-18. These microbial
metabolites also stimulate dendritic cells and macrophages to produce IL-10 and retinoic acids, both of
which are important for the development of IL-10–producing Tregs in the colon. Therefore, butyrate and
niacin contribute to the maintenance of intestinal homeostasis through multiple mechanisms.
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Subpopulations of dendritic cells (DCs) in the small intestine and its related lymphoid organs can produce retinoic acid (RA) from vitamin A (retinol). Through the RA production, these DCs play a pivotal role in imprinting lymphocytes with gut-homing specificity, and contribute to the development of immune tolerance by enhancing the differentiation of Foxp3(+) regulatory T cells and inhibiting that of inflammatory Th17 cells. The RA-producing capacity in these DCs mostly depends on the expression of retinal dehydrogenase 2 (RALDH2, ALDH1A2). It is likely that the RALDH2 expression is induced in DCs by the microenvironmental factors in the small intestine and its related lymphoid organs. The major factor responsible for the RALDH2 expression appears to be GM-CSF. RA itself is essential for the GM-CSF-induced RALDH2 expression. IL-4 and IL-13 also enhance RALDH2 expression, but are dispensable. Toll-like receptor-mediated signals can also enhance the GM-CSF-induced RALDH2 expression in immature DCs.
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Upregulation of plasma
metabolites in animals
supplemented with L. johnsonii

Animals were supplemented with 1 X
107 cfu of L. johnsonii by oral gavage
for 7 days and plasma metabolite
levels were assessed

Supplemented animals were then
infected with RSV. After 2 days of RSV
infection plasma from sacrificed
animals (5/group) was harvested and
the metabolite levels compared to
supplemented mice at day O prior to
infection.
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Alteration of RSV-induced DC activation by
plasma from L. johnsonii supplemented mice
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BMDC were pre-incubated with
plasma from supplemented
animals at day 2 of RSV
infection.

DC were infected with RSV for
24 hrs and assessed for
cytokine expression.

Similar to the response of
BMDC from supplemented
mice, the plasma from L.
johnsonii supplemented mice
induced higher cytokine
production.
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Environment, Microbiome, Metabolic
activity, and immunity
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Susceptibility to chronic disease

* Environmental influence and exposure

e Early influence may be crucial for
establishing the appropriate immune
environment.
Interface of genetics with the environment
has a contributory role in disease
susceptibility and severity.

Brestoff and Artis, Nat. Immun., 14:676, 2013
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