Geospatial Associations of Air Pollutants and Asthma in Detroit and Windsor: The GeoDHOC Investigation

CURES New Perspectives Symposium: Addressing the Asthma and Allergy Epidemics October 7, 2015 Lawrence D. Lemke

Department of Geology / Environmental Science Program

Acknowledgments

Research Funding and In-kind Support:

- Wayne State University
- University of Windsor
- Health Canada
- Henry Ford Health System
- W.K. Kellogg Foundation
- Detroit Medical Center

Essential Support:

- City of Detroit
- City of Windsor
- Great Lakes Institute for Environmental Research
- Michigan Department of Environmental Quality

Presentation Outline

1. GeoDHOC project overview / study design

2. Summary of results in Detroit and Windsor

- Air sampling
- Air quality modeling
- Asthma associations

3. Present GeoDHOC initiatives

- Spatio-temporal air quality modeling in Detroit
- Birth outcome associations

Urban Air Quality and Health

Is our health connected to the air we breath?

Does air quality vary in different parts of a city?

USEPA My Air My Health

Are some neighborhoods more vulnerable than others? **GeoDHOC**

Geospatial Determinants of Health Outcomes Consortium

The GeoDHOC Team

Geospatial Determinants of Health Outcomes Consortium

Team 1 Air Sampling and Environmental Modeling

> Team 2 Epidemiology and Health Outcomes

Team 3 **Data Integration** and Geospatial Modeling

Xu

Graniero

Weglicki Lamereto

Lemke

Reiners

Booza

Grgicak-Manion

Krajenta

Raymond

Detroit and Windsor share the same airshed... ...but have different: - population demographics - environmental regulations - health care systems

2008 Pilot Study:

Develop geospatial models to relate <u>air quality</u> and <u>asthma</u> in Detroit and Windsor.

Simultaneous Air Sampling

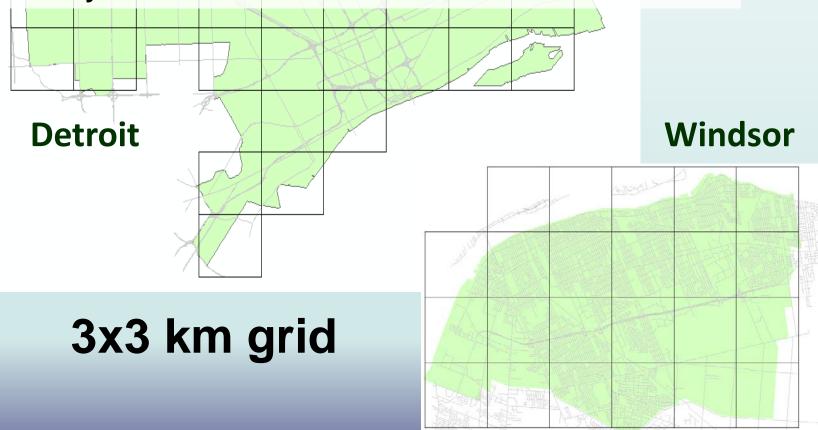
September 2008 and June 2009

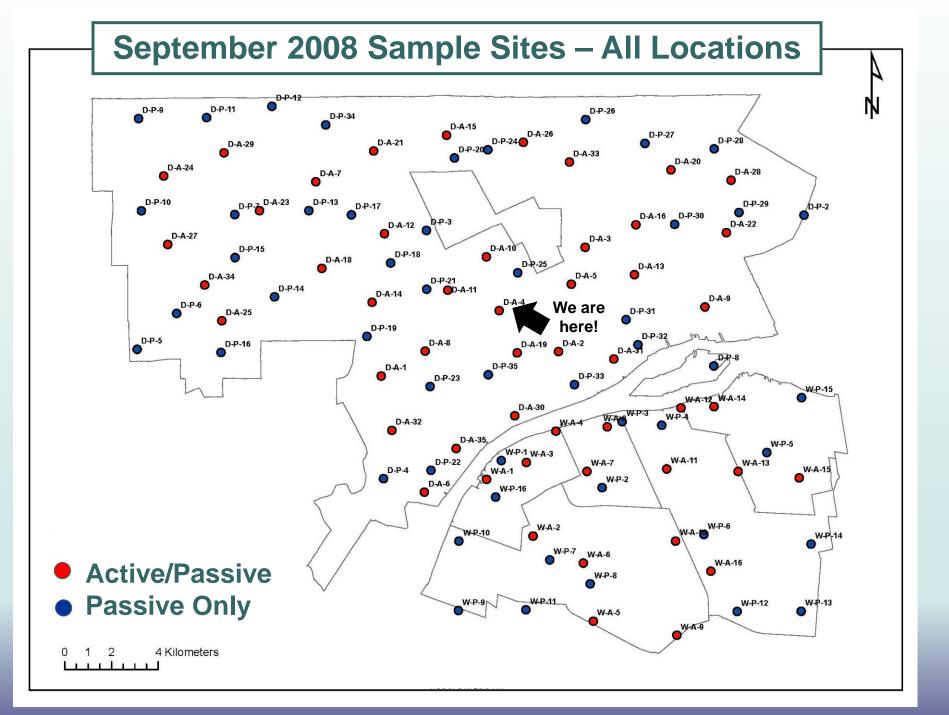
- NO₂, SO₂
- 26 Volatile Organic Compounds (VOCs)
 - BTEX, paint thinners, dry cleaning solvents
- 23 Polycyclic Aromatic Hydrocarbons (PAHs)
 - Anthracene ()
- Particulate Matter (PM₁, PM_{2.5}, PM₁₀)

Two types of samplers

PM and PAHs

NO_2 SO_2 and VOCs

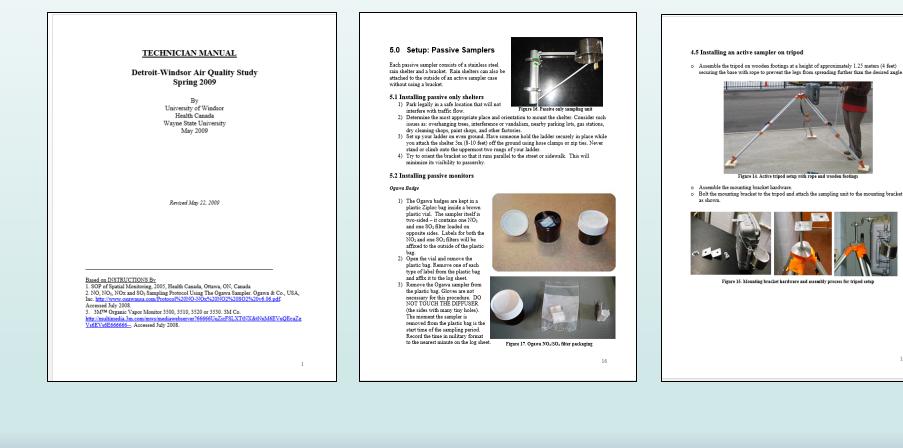



SAMPLER TYPE	Total	Detroit	Windsor
Passive Only	50	34	16
Active + Passive	50	34	16
TOTAL Locations	100	68	32

Sampler Locations

Key Considerations:

- Geographic Distribution
- Prioritization (land use, population density, prior AQ models)
- Security



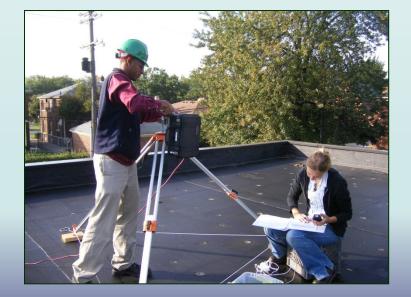
2008 Air Sampling Campaign Sept 5-20, 2008

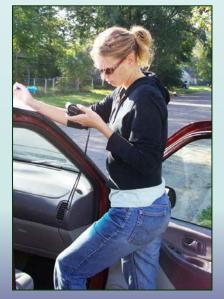
Question: How do you deploy 100 samplers across two cities in two days?

Answer: 20 Undergrads and 2 Grad Students from Geology, Environmental Science, and Civil & Environmental Engineering RAINGE

Training: SOP Manual

Air Sampling - Training





Air Sampling - Deployment

Air Sampling - Retrieval

Completed Log Sheet

Page 1 of 2							F	age 2 of	f 2			
	WSU	/UW A	ir Qual	ity Stud	y Sun	nmer 2	008				WOLL	1 1337
		LOC	G SHE	ET: PA	SSIV	E					WSU/	
Site ID:	D-A-21	0		Start Dat	e (dd/m	m/vvvv):	05/09/2008			N-0	21	
		0								<u>B-A</u>		
Operator's	s initials Setup:	NJ		Ta	akedowi	n: <u>[]</u>]	69/2008		Opera	tor's initia	ls Setup:	RJ
Coordina	ites GPS	Unit ID N	No: 1	UTM	Coordi	nates: /7	T 0330294 4699581	1	н	eight abov	e ground	
Setup	Way	point ID:	D-A-2	6-1 Estin	nated A	ccuracy:	4.9		Case	Pump	Flow	Start
Coordina	(ASCINC) (ASCINCTANES)	Unit ID N	No:	UTM	Coordi	nates:	17 70330285		No.	No.	Meter	Time
Takedowi	n Way	point ID:	D-A-26	Estin	nated A	ccuracy:	41699579				No.	(hh:m)
Street Ad	18	3601	Rya	n					5	21020	FM-1	17:54
Descriptio	on* Lo	cated	ona	down :	spout	on th	e NW corner enched in parking		Dell	utant	Т	abel ID
Description	101		the sto	ition h	uthin	the t	enched in parking		PM (5	and the second		B-PM1-02
	10	l ta									DWSC	8-PUF1-(
											DWSO	3-PUF2-0
Describe	exact location s	so that it co	ould easily	be found b	oy anoth	er technio	cian, and take a few		PAH (2	2 LPM)	DWS08	3-PAH-00
pictures									* ideal	flow rate.	Actual flo	w rate ca
Ogawa	Passive San	nple								k IDs (a	s appli	
Pollutant	Label I		Start Time*	Stop Da	ate	Stop Time*	Comments:			08-PM1-03		PAHS
			(hh:mm)	(dd/mm/y		(hh:mm)			DW	WS08-PUF S08-PUF2-(
NO ₂	DWS08-NO	2.071	8:11	ial .		1:10	good		Comm	Lenio.	local	ad a
	DVV500-IVO.	2-071 1	0.11	19/09/	2608	3:10	condition	_	Ply	mo vent	IUCUA	enu
SO ₂	DWS08-SO2-0	71	8:11	11/10	1	13:10	y and		Saw	pling 1	unit lo	cated
		1	0,11	19/09	/2008	13.10	(ondition		Cro	opentl	u Bo	y do
VOC Sa	ample								a	no vent upling u quentl ound	the co	mer
Sample ID		rt Time* h:mm)		Date m/yyyy)	Stop T (hh:r	nm)	Comments:		at	schoo	ol abi	sut a
DWS08-VO	C-046	:09	ral a	1. 1	13:1	1	good condition		Air	condi	tioning	1 uni
	10	:10	1109	12008	13:1]	good condition		uni	+. C.	on blue	f get
DWS08-VO	0.14:0	10										
	Ds (as appli								19/09	12008		
VOC		awa NO ₂		Ogawa SO ₂						-	take doil	on
N	A	NA		NA								

Air Quality Study Summer 2008 **OG SHEET: ACTIVE** _Start Date (dd/mm/yyyy): 05/09/2008 Takedown: 19/09/2008 9 feel Height above roof Stop Date Pump Stop Flow Pump Display Time Display (dd/mm/yyyy) Meter (hh:min) Time n) Time No. (min) (min) 13.16 19882 19/09/2008 FM-1 Start Split Flow (LPM) **End Split Flow** (LPM) Initial Adjusted 5.291 5.284 5-205 5.205 5.022 5+010 9 029 29 4 1.960 1.959 .947 1.948 2.026 2.032 an be +5% JA good

about 25 Ft from sampling unit. in a parking lot, so cars drive by sor for fire engines located just of the building. Incinerator located block away, New from fire station. t located about 30ft from sampling estimated accurracy below 6.9, even in front of building was occurring near unit when we care for

Lab Analyses & QA/QC

Detroit-Windsor	Summer	2008	Filter	Analyses
------------------------	--------	------	--------	----------

Analysis	Laboratory	Location
VOC	AirZOne Inc.	Mississauga, Ontario
NO_2/SO_2	Environment Canada	Egbert, Ontario
PAH	AirZOne Inc.	Mississauga, Ontario
PM	Alberta Research Council	Vegreville, Alberta

Sampler Type	Deployed	Passed QA/QC
Passive	100	98 (98%)
Active	50	38 (76%)

VOC Species Exclusion

Criteria: Exclude analytes with fewer than 80% of sample sites registered values above variable MDL.

	VOC Analytes	% Count >MDL			
1	Toluene	100			
2	(m+p)-Xylene	100			
3	Dichloromethane (DCM)	100			
4	Benzene	99			
5	Ethylbenzene	99			
9	o-Xylene	99			
6	Hexane	99			
7	1,2,4-Trimethylbenzene	99			
10	n-Decane	98			
8	Trichloroethylene	97			
12	1,3,5-Trimethylbenzene	97			
11	Chloroform	90			
13 Tetrachloroethylene 81					
14	Naphthalene	80			
15	1,4-Dichlorobenzene	69			
17	a-Pinene	59			
16	d-Limonene	48			
18	1,2-Dichloroethane	27			
19	p-Cymene	3			
20	Cumene	2			
21	Styrene	0			
22	1,1,2,2-Tetrachloroethane	0			
23	Pentachloroethane	0			
24	1,3-Dichlorobenzene	0			
25	Hexachloroethane	0			
26	6 1,2,4-Trichlorobenzene 0				

PAH Species Exclusion Criteria: Exclude analytes with fewer than 80% of sample sites registered values above variable MDL. % >MDL **PAH Analytes** 1 Anthracene 100 2 Fluoranthrene 100 3 Fluorene 100 4 Phenanthrene 100 5 Pyrene 100 6 Acenaphthene 97 7 ortho-Phenylphenol* 84 8 Diazinon* 66 9 Chrysene 58 10 Acenaphthylene 50 11 Benz(a)anthrancene 21 12 Chlorpyrifos (Dursban)* 21 13 Benz(k)fluoranthene 3 14 Benzo(b)fluoranthrene 3 15 Benzo(a)pyrene 0 16 Benzo(ghi)perylene 0 17 cis-Permethrin* 0 18 Dibenz(a,h)anthracene 0 19 Indeno(123-cd)pyrene 0 20 Piperonyl butoxide* 0 21 Propoxur (Baygon)* 0 22 trans-Permethrin* 0 23 Naphthalene** 0 **Excluded Species** *pesticide

Excluded Species

Acute Asthma Events in 2008

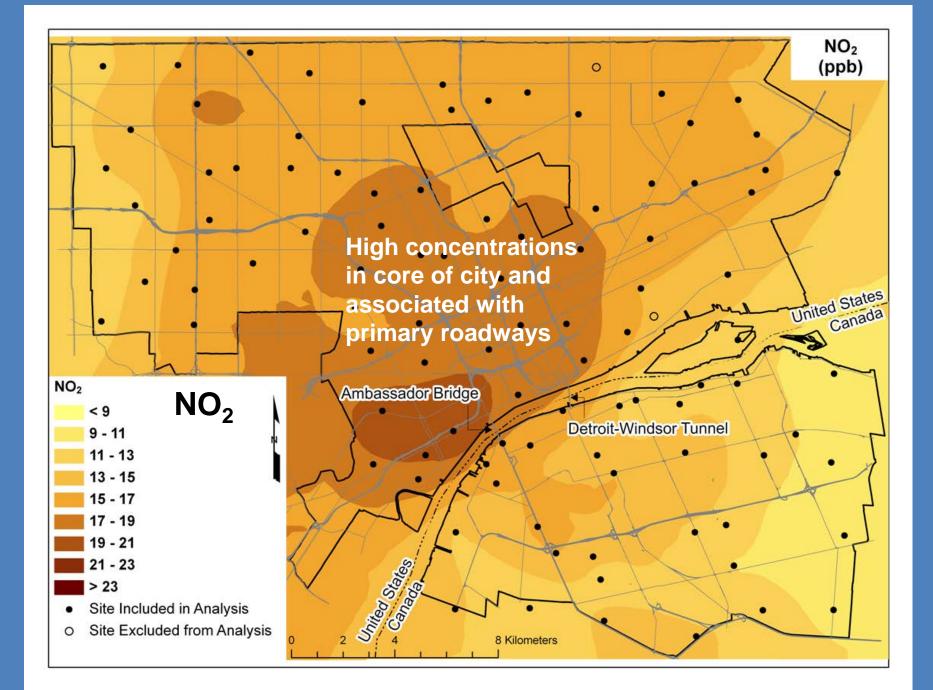
Hospital Admissions + Emergency Room Visits

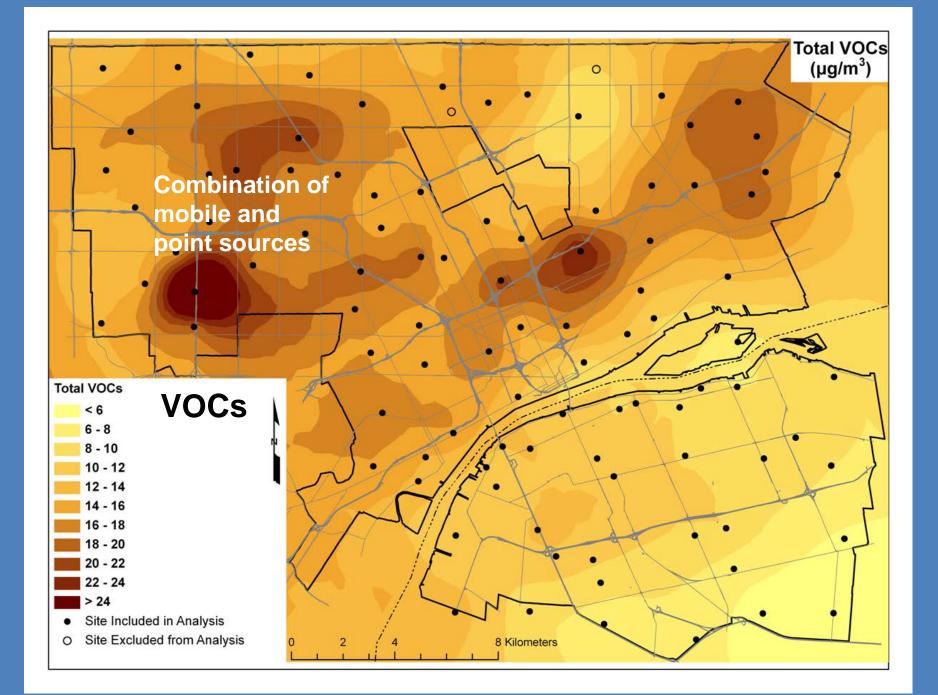
- primary diagnosis of asthma
 - ICD9-CM codes (493.xx) or ICD-10 code (J45)
- HFHS: approximately 2800 events
- CIHI: approximately 650 events
 - Discharge Abstract Database (DAD) for hospital admissions,
 - National Ambulatory Care Reporting System (NACRS) for emergency department visits
- Geocoded by residential address
 - assigned to postal code area
 - stratified by age and gender

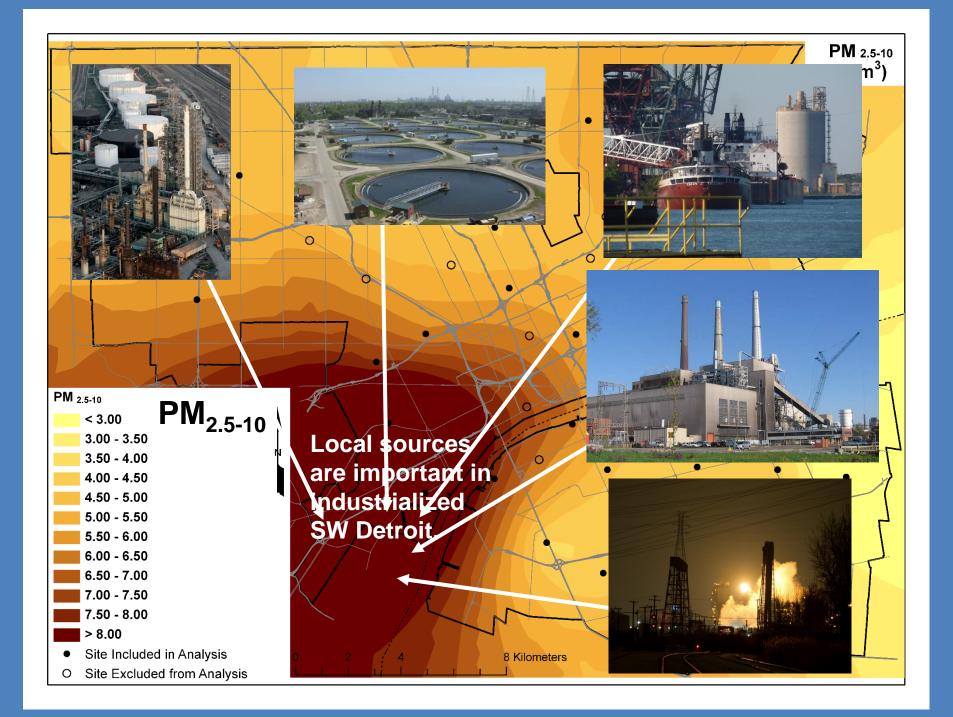
Asthma Study Findings

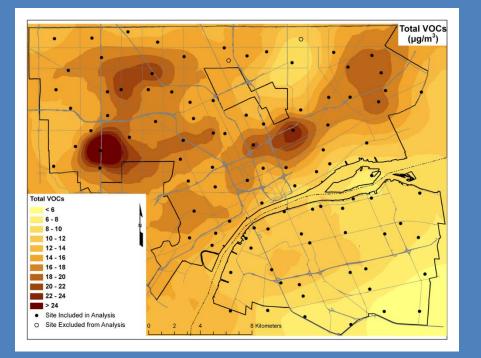
1. Neighborhood scale variability of air pollutants in Detroit and Windsor

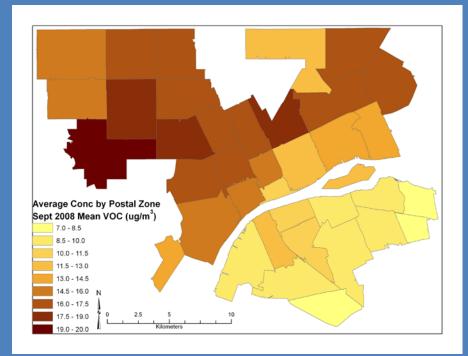
2. Asthma-Air Pollution Associations

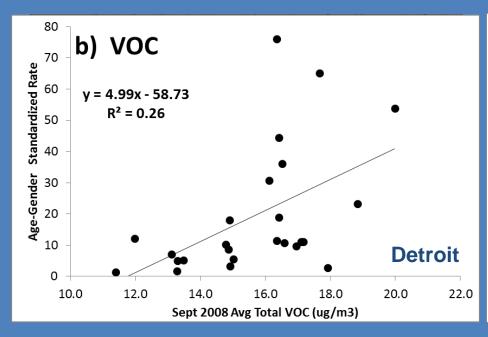

- NO₂, VOCs and PM₁₀ in Windsor
- BTEX and VOCs in Detroit

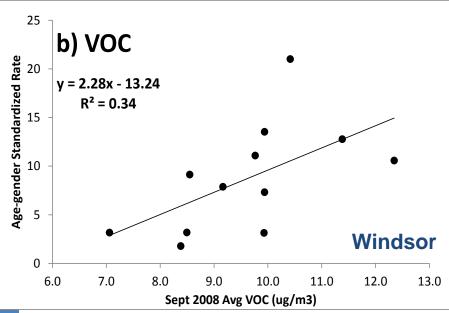

3. Population-normalized asthma events

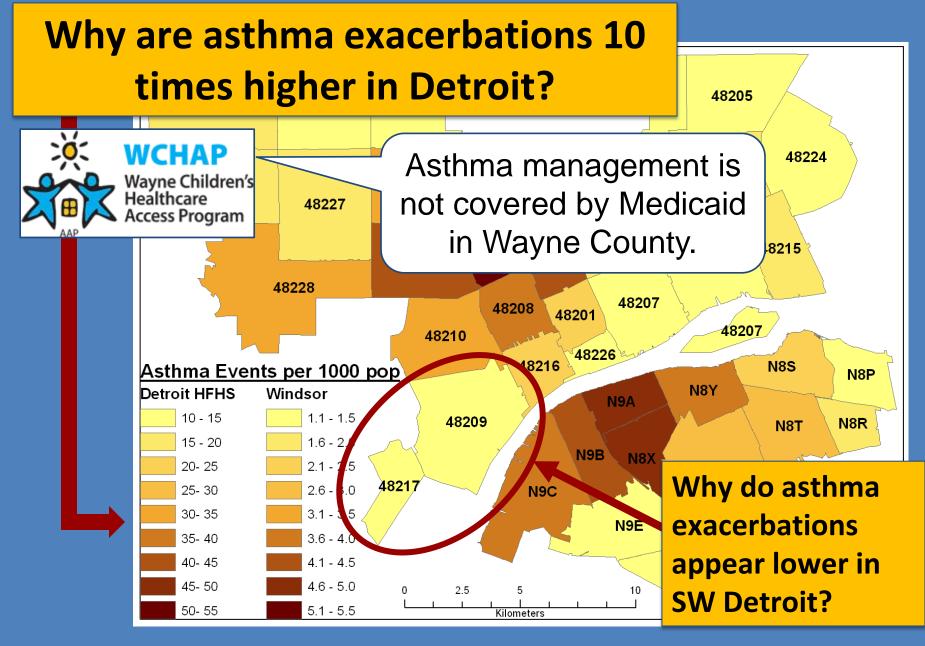

• Detroit ~ 10 times greater than Windsor

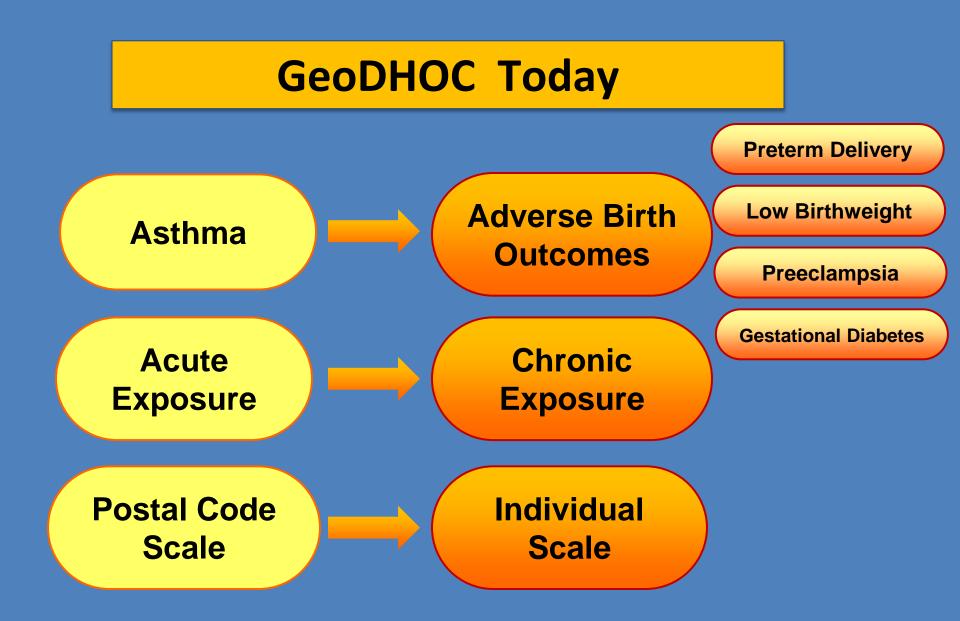

Miller et al., 2010, Atmospheric Environment


Lemke et al., 2013, Journal of Exposure Science and Environmental Epidemiology



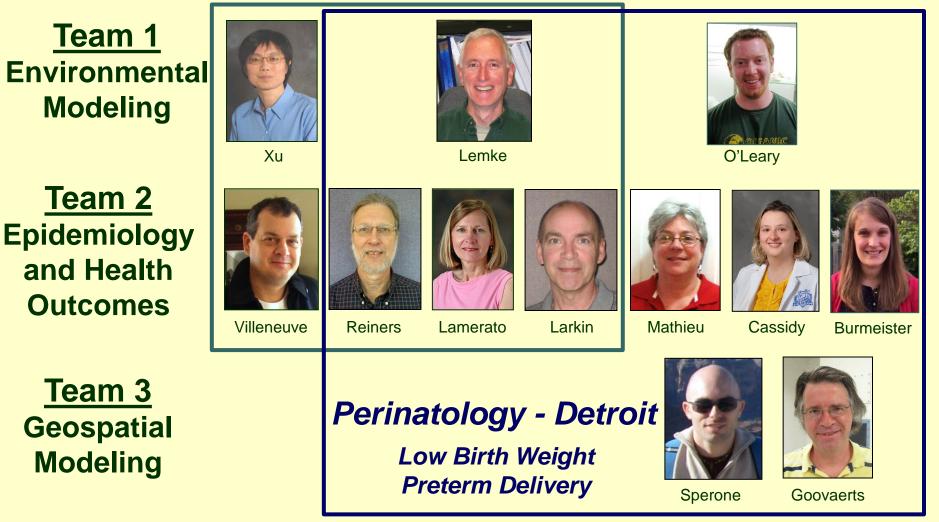




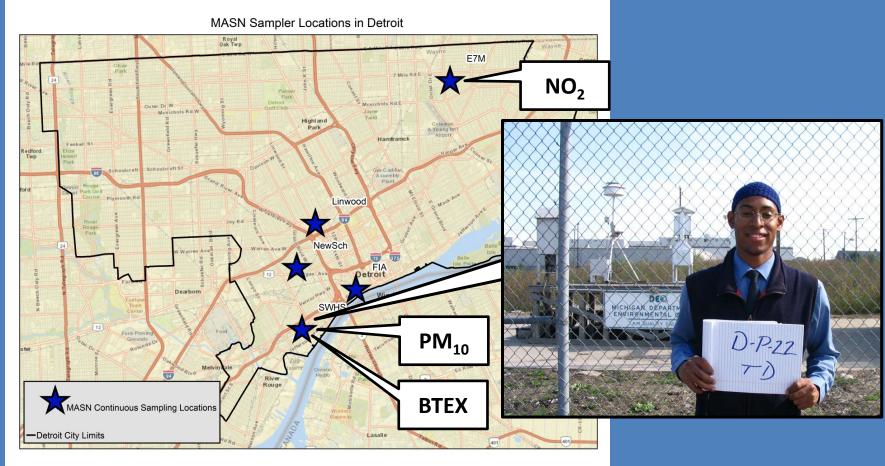

Asthma Correlations

	Det	roit		Windsor		
	r	р		r	р	
NO ₂	0.17	0.40		0.63	0.03	
BTEX	0.53	0.01		0.43	0.16	
VOC	0.51	0.01		0.58	0.05	
PAH	0.09	0.68		0.38	0.23	
PM ₁	0.19	0.38		0.04	0.90	
PM _{2.5}	-0.04	0.84		0.31	0.33	
PM ₁₀	0.000	1.00		0.61	0.04	

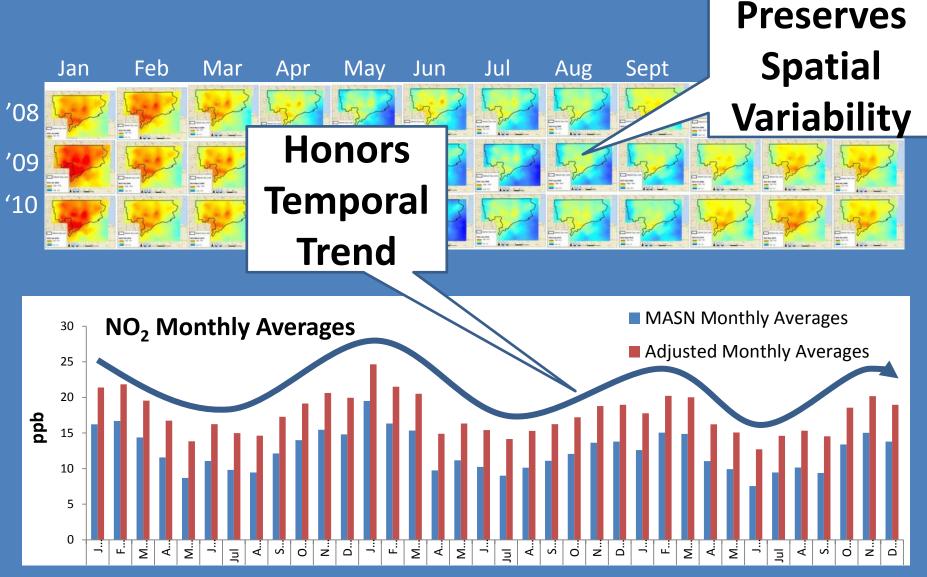
Lemke et al., 2013, *Journal of Exposure Science and Environmental Epidemiology* doi: 10.1038/jes.2013.78



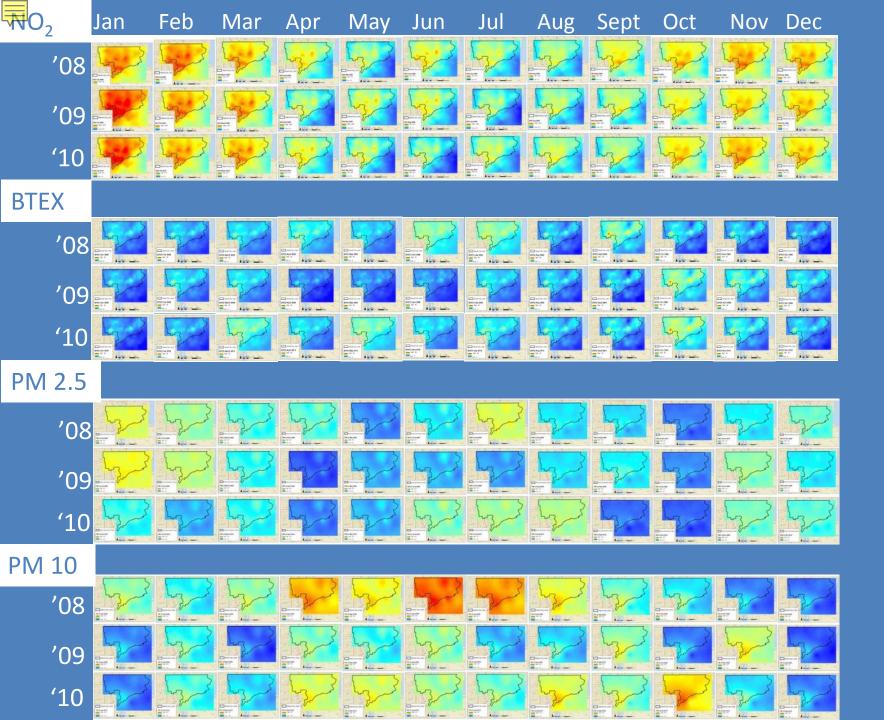
Lemke et al., 2013, Journal of Exposure Science and Environmental Epidemiology

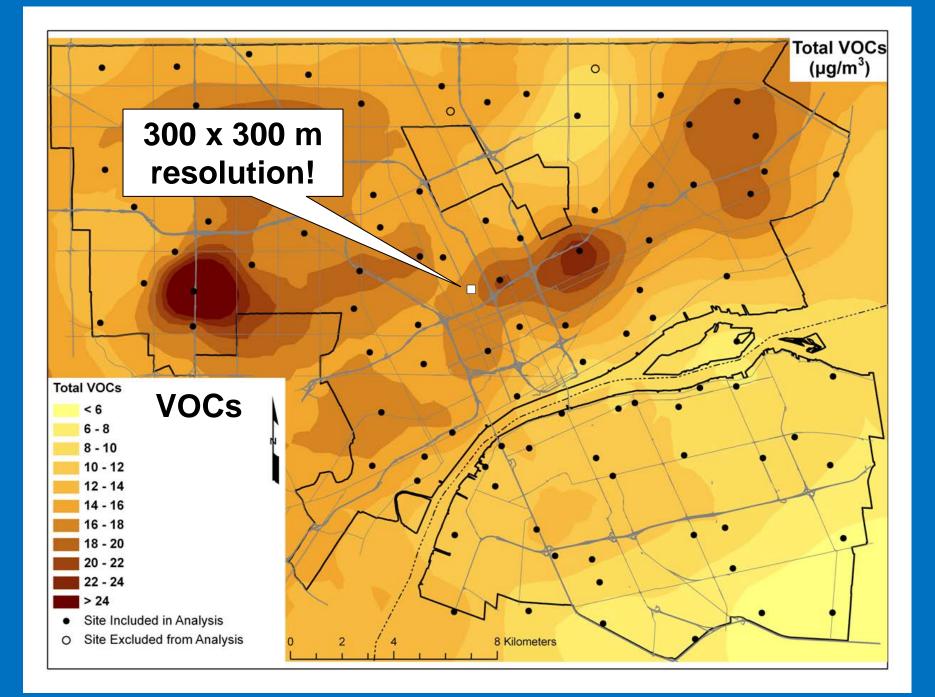


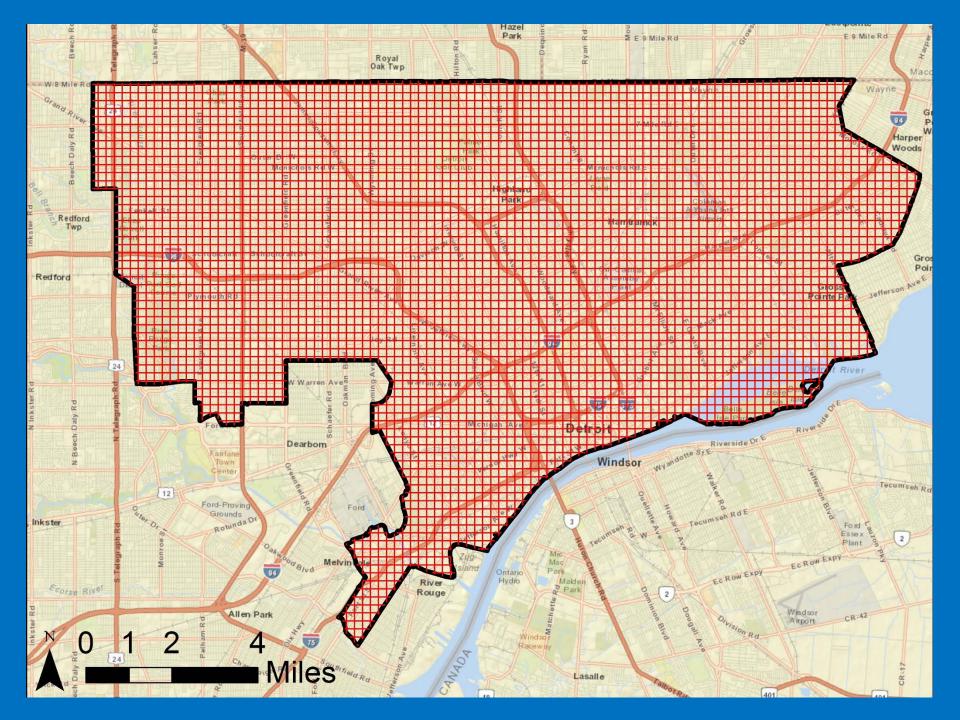
Asthma – Detroit and Windsor



Michigan Air Sampling Network (MASN)






Monthly Concentration Maps

O'Leary and Lemke, 2014, Atmospheric Environment

Individual level exposure estimates based on residential address

ALC IN DESIGNATION

м 10 Fisher

HFHS 🛃

THE

F1

Next

Energy

Image Landsa

-BIO

94

Merits of Geospatial Environmental Health Analysis

- High resolution air quality models
 - Spatial Detail (GeoDHOC)
 - Temporal Detail (MASN)
- Health Outcome Investigations
 - Asthma
 - Birth Conditions
 - Maternal Complications
 - Allergies?
- Science and Public Policy
 - Spatial and temporal associations
 - Visualization for effective communication

Neighborhood Scale Variability is Essential in Urban Areas